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Exceeding the Courant Condition
with the FDTD Method

Dennis M. Sullivan, Senior Member, IEEE

Abstract— The finite-difference time-domain (FDTD) method
is a time-domain implementation of Maxwell’s equations that
has found a bread range of applications in electromagnetic
simulation. A fundamental stability consideration is the Courant
condition, which dictates that the time steps used must be long
enough to allow the electromagnetic (EM) field to propagate
across a cell at the speed of light. A method is described that,
under certain circumstances, allows the Courant condition to be
exceeded, resulting in a substantially faster computation.

I. INTRODUCTION

HE finite-difference time-domain (FDTD) method [1] has

found applications in a broad range of electromagnetic
simulation problems [2]. This method simulates the prop-
agation of electromagnetic radiation by time stepping the
Maxwell’s equations. The problem space is divided up into
small cubes (for a three-dimensional (3-D) problem). The
physical size of these cubes, or cells, is usually dictated by
the need for accuracy. It is generally accepted that the cell
size cannot be larger than one-tenth of a wavelength of the
highest frequency being simulated. Given that the cell size
has been cheosen, the size of the time step is limited by the
Courant condition [2], which dictates (in three dimensions)

dx
V3¢

where 61 is the time step, dz is the cell size, and c is the speed
of light. This must be chosen on a “worst case” basis, i.e., the
value for which c is the highest. If the background medium
is free space. then the choice of ¢ in (1) is clear. However,
if the background medium is something else, than §¢ can be
selected by

ot <

1

St < dx - v/ Emin
V3.c

where £, 18 the smallest dielectric in the problem space.
There are many instances where the background medium is
other than free space, so (2) would dictate that a much larger
time step could be used resulting in a faster FDTD solution.
For instance, if the background medium were water with a
dielectric constant of 80, this represents a value of di nine
times greater than free space. But, if there is an object within
the water that is air or something close to air with a relative
dielectric of one, the smaller time step must be used.
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This letter describes a method of circumventing the worst
case requirements of (2), at least under some circumstances.
To do so, it borrows from the recently developed ideas to
simulate dispersive materials with FDTD [3]-[6].

II. THE DRUDE MODEL

The FDTD method involves the solution of equations of
the form

oD

=Vl (3a)
D(w) =&l (w) - E(w) (3b)

oH 1

= VX E 3¢)

where (3a) and (3c) are the time-dependent Maxwell’s curl
equations. Equation (3b) is presented in the frequency domain
because the complex dielectric constant e}(w) is almost al-
ways given in the frequency domain. This equation must be
expressed in the time domain to be compatible with the FDTD
paradigm. One of the methods of converting this to a difference
equation has been the use of the Z transform [5], [6]
D(2) =¢€(z) - E(z)-T. 4
For instance, the permittivity of unmagnetized plasmas is
given as

! (A}z

ef(w) =1+ ‘W(J-Tp_w—)

&)

where

wp  2nfp

fp  plasma frequency

v, electron collision frequency.

Taking the Z transform of (5) and inserting it into (4)
(details are given in [6])

2

w, T
D(z) =E(z) + -

(1- e Vo)1
1—(1—eveT)z=l 4 eveTy=2

]E(z). (6)

An auxiliary term will be defined as

w127T 1 —eveT

S(2) = Ve [1 —(1—e v Tzl 4 eveTz=2

I,
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Fig. 1. Diagram of the test to evaluate the FDTD caiculation of the E field
distribution through and around a sphere of plasma. The plasma frequency
is 2000 THz and the electron collision frequency is 57 THz. The sphere is
10 mm in diameter.

E(z) can be solved for by

E(z) =D(2) — 2718(2) . (8a)
S(z) =1 +e Tz 5(z) — e T2728(2)
(?Tu—e““ﬁE@) (8b)

As an example, the problem illustrated in Fig. 1 was
simulated using an FDTD program and this formulation. The
FDTD program has a problem space divided into two regions,
the total field and the scattered field. A plane wave is generated
at one end of the total field, propagates the length of the field,
and ‘is subtracted out the other end. This plane wave is a
Gaussian pulse, and the resulting absorption or scattering is
calculated by a running Fourier transform [5].

Fig. 2 is the graph of the E field calculation through the
plasma sphere for three different frequencies. The FDTD
results are compared to analytic calculations using Bessel
function expansions to establish accuracy. There are three very
different patterns for the three different frequencies. However,
the results make sense in light of Table I, which displays the
complex dielectric constant for the three frequencies. At 200
THz, close to the collision frequency, a dielectric of ~98—i4.5
results in almost complete reflection, as if the sphere were a
metal. In contrast, at 4000 THz, above the plasma frequency,
£*(w) = 0.75 — $0.000 57 looks very much like free space,
and in fact, it appears almost transparent to the incident field.
The truly interesting result is at the plasma frequency, 2000
THz, where £*(w) = —i0.00454, i.e.,

w?
wp) =1+ —F—=1-1 9)
JVewp — wp

According to the Courant condition of (2), the FDTD
program should have gone unstable for a dielectric constant
that is almost zero. What happened, of course, was that the core
FDTD program, which simulates (3a) and (3¢), was calculating
for e*(w) = 1 and the —1 part was being calculated by (8b).
In (5), the second term on the right goes to negative one at
the plasma frequency. This idea can be exploited by using a
higher dielectric than usual in order to use a larger time step,
via (1), and then subtracting the excess dielectric out via the
Drude model at the plasma frequency.
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Fig.2. Comparison of FDTD results versus Bessel function expansion results
for an EM wave propagating through a plasma sphere. The parameters used
were: plasma frequency = 2000 THz, collision frequency = 57 THz. The
diameter or the sphere was 10 pm.

TABLE 1
CoMPLEX DIELECTRIC CONSTANT OF THE DRUDE MODEL
e(w) = 14 (wp /jwre — w?) USING wp = 2000 THz,
AND v, = 57 THz ror THREE DIFFERENT FREQUENCIES

Frequency Dielectric constant Appears like
200 THz -98-i14.5 Metal
2000 THz -10.000454 Plasma resonace
4000 THz 75 - 1.00057 Free space

III. HYPERTHERMIA EXAMPLE WITH WATER BACKGROUND

Fig. 3 illustrates another simulation problem where the
background material is distilled water with ¢ = 80, and the
object is a layered sphere with dielectric properties equal to
those of fat, muscle, and air at 100 MHz (Table II). This
is typical of a simulation problem for hyperthermia cancer
therapy where external RF applicators are coupled to human
tissues via distilled water. The human body being modeled
would be fat and muscle (bone has about the same dielectric
constant as fat) and air from the lung, or pockets within the
intestine. The time step, dt, would be calculated by (2) using
€min = 1, corresponding to air. So if cells of 1 cm were used

dz - .
2 VEmin _ g 99 x 10~

V3¢

This is unfortunate. If the dielectric of the background
medium could be used

5t < (0.01) - /80

V3 (3 x 108)

or V80 = 8.9 times as large, meaning the simulation goes

almost nine times as fast.
Suppose the air were modeled as

ot <

= 17.2x 1071

w?
Shin(w) = 80+ 79 — 2

—— 10
(jl/c _ CU) ( )
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Fig. 3. Diagram of a test to evaluate the FDTD calculation through a sphere
with parameters typical of those in a hyperthermia cancer therapy simulation.
The outer diameter is 30 cm, the muscle sphere has a diameter of 16 cm, and
the air sphere is 4 cm in diameter. The distilled water, which is the background
medium, has a dielectric constant of 80. The entire problem space is 60° cm3.
The FDTD cells are 1 cm®.

TABLE II
VALUES OF THE DIELECTRIC CONSTANT AND CONDUCTIVITY
FOR VARrIOUS HuMmaN Tissugs aT 100 MHz

Tissue type Dielectric constant Conductivity
Muscle 70 .9
Fat (bone) 5 .05
Air ‘ 1. 0
where
wp =100 MHz
v, = 10MHz.

At 100 MHz, the term on the right in (10) is

w2
79 - P 5 = =79
JVe - wp — W

and (10) becomes

efi(w)=80-79=1 (11)

i.e., it starts out with the higher dielectric constant that was
wanted to satisfy the Courant condition, but the Drude formu-
lation will subtract out most of the value to give the correct
effective dielectric at the frequency of interest. The FDTD
formulation would go as follows: Taking the Z transform of
(10) and inserting it into (4)

E(2) =D(2) — 2715(2) (12a)
S(z) =(1+e " Tz718(2) — e " T2725(z)
w2T
+ (80 —¢,) 5 (1-eTE(z). (12b)
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Fig. 4. Comparison of Bessel function and FD'ID results for the problem
illustrated in Fig. 3, i.e., a layered sphere in distilled water. The incident
frequency was' 100 MHz.

Equation (12b) is the extra term to implement the speed up.
A similar formulation must be used for the fat and muscle
tissue. The results of such a simulation are illustrated in Fig.
4. The problem space was 603 and the program occupied 10.1
megawords of core memory on a DEC Alpha workstation. The
problem converged in 250 time steps. Similar results were
obtained using the usual time step dictated by the Courant
condition for free space. However, it required 1500 time steps.

IV. DISCUSSION

The technique described in this letter offers the possibility of
a substantial speed up in computation time for some problems
using the FDTD method. '

There are two disadvantages to using this method: 1)
information is only obtainable at one frequency per run and
2) the extra calculation to implement the Drude formula-
tion adds extra complexity and requires more core memory

‘(approximately 10%).
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