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Abstract— The finite-difference time-domain (FDTD) method
is a time-domain implementation of Maxwell’s equations that
has found a broad range of applications in electromagnetic
simulation. A fundamental stability consideration is the Courant
condition, which dictates that the time steps used must be long
enough to alllow the electromagnetic (EM) field to propagate

across a cell at the speed of light. A method is described that,

under certain circumstances, allows the Courant condition to be
exceeded, resulting in a substantially faster computation.

I. INTRODUCTION

T HE finite-difference time-domain (FDTD) method [1] has

found applications in a broad range of electromagnetic

simulation problems [2]. This method simulates the prop-

agation of electromagnetic radiation by time stepping the

Maxwell’s equations. The problem space is divided up into

small cubes (for a three-dimensional (3-D) problem). The

physical size of these cubes, or cells, is usually dictated by

the need for accuracy. It is generally accepted that the cell

size cannot be larger than one-tenth of a wavelength of the

highest frequency being simulated. Given that the cell size

has been chclsen, the size of the time step is limited by the

Courant condition [2], which dictates (in three dimensions)

(1)

where & is the time step, dx is the cell size, and c is the speed

of light. This must be chosen on a “worst case” basis, i.e., the

value for which c is the highest. If the background medium

is free space. then the choice of c in (1) is clear. However,

if the background medium is something else, than bt can be

selected by

(2)

where &,nin is the smallest dielectric in the problem space.

There are many instances where the background medium is

other than free space, so (2) would dictate that a much larger

time step could be used resulting in a faster FDTD solution.

For instance, if the background medium were water with a

dielectric constant of 80, this represents a value of dt nine

times greater than free space, But, if there is an object within

the water that is air or something close to air with a relative

dielectric of one, the smaller time step must be used.
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This letter describes a method of circumventing the worst

case requirements of (2), at least under some circumstances.

To do so, it borrows from the recently developed ideas to

simulate dispersive materials with FDT.D [3]–[6].

II. THE DRUDE MODEL

The FDTD method involves the solution of equations of

the form

!~=VxH (3a)

D(u) = E;(u) . E(w) (3b)

(9H
—.–bx Eat–p (3C)

where (3a) and (3c) are the time-dependent Maxwell’s curl

equations. Equation (3b) is presented in the frequency domain

because the complex dielectric constant e;(w) is almost al-

ways given in the frequency domain. This equation must be

expressed in the time clomain to be compatible with the FDTD

paradigm. One of the methods of converting this to a difference

equation has been the use of the Z transform [5], [6]

D(z) = e(z) . E(z) . T. (4)

For instance, the permittivity of umnagnetized plasmas is

given as

2

&*(w) = 1 +
‘P _

LIJ(jvc – w)
(5)

where

Wp 2Tfp

f, plasma frequency

v. electron collision frequency.

Taking the Z transform of (5) and inserting it into (4)

(details are given in [6])

D(z) = E(z) + $

“[
(~_ ~-ucqz-l

1 – (1 – e–vc”T)z–l + f;–uC’Tz–2 1E(z).(6)

An auxiliary term will be defined as

w; T

[

1 _ ~–vc.lr

s(z) = ~
ml – e–uc’~)z–l +- e–V’”Tz–2 1E(z).

(7)
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Fig. 1. Diagram of the test to evaluate the FDTD calculation of the E field
distribution through and around a sphere of plasma. The plasma frequency
is 2000 THz and the electron collision frequency is 57 THz. The sphere is
10 mm in diameter.

E(z) can be solved for by

E(z) = D(z) – Z-IS(Z) (8a)

S(z) =(1 + e-u’’T)~-lS(z) – e-u’”Tz-2S(z)

w: T
+ ~ (1 – e-U’’T)E(z). (8b)

As an example, the problem illustrated in Fig. 1 was

simulated using an FDTD program and this formulation. The

FDTD program has a problem space divided into two regions,

the total field and the scattered field. A plane wave is generated

at one end of the total field, propagates the length of the field,

and is subtracted out the other end. This plane wave is a

Gaussian pulse, and the resulting absorption or scattering is

calculated by a running Fourier transform [5].

Fig. 2 is the graph of the E field calculation through the

plasma sphere for three different frequencies. The FDTD

results are compared to analytic calculations using Bessel

function expansions to establish accuracy. There are three very

different patterns for the three different frequencies. However,

the results make sense in light of Table I, which displays the

complex dielectric constant for the three frequencies. At 200

THz, close to the collision frequency, a dielectric of –98– i4.5

results in almost complete reflection, as if the sphere were a

metal. In contrast, at 4000 THz, above the plasma frequency,

E*(u) = 0.75 — zO.000 57 looks very much like free space,

and in fact, it appears almost transparent to the incident field.

The truly interesting result is at the plasma frequency, 2000

THz, where e“ (w) = –20.004 54, i.e.,

2

e“(wp) = 1+
‘P =1–1. (9)

Ju.wp – w:

According to the Courant condition of (2), the FDTD

program should have gone unstable for a dielectric constant

that is almost zero. What happened, of course, was that the core

FDTD program, which simulates (3a) and (3c), was calculating

for e“ (w) = 1 and the – 1 part was being calculated by (8h).

In (5), the second term on the right goes to negative one at

the plasma frequency. This idea can be exploited by using a

higher dielectric than usual in order to use a larger time step,

via (1), and then subtracting the excess dielectric out via the

Drttde model at the plasma frequency.
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Fig. 2. Comparison of FDTD results versus Bessel function expansion results
for an EM wave propagating through a plasma sphere. The parameters used
were: plasma frequency = 2000 THz, collision frequency = 57 THz. The
diameter or the sphere was 10 pm.

TABLE I
COMPLEX DIELECTRIC CONSTANTOF THE DRUDE MODEL

E(U) = 1 + (u; /juvc – U2) USmG tiP = 2000 THz,
AND v. = 57 THz FOR THREE DIFFERENT FREQUENCIES

Frequency Dielectric constant Appears hke

200 THz -98- i 4.5 Metal

2000 THz - i 0.00&154 Plasma resonate

4000 THz .75- i.00057 Free space

III. HYPERTHERMIA EXAMPLE WITH WATER BACKGROUND

Fig. 3 illustrates another simulation problem where the

background material is distilled water with E = 80, and the

object is a layered sphere with dielectric properties equal to

those of fat, muscle, and air at 100 MHz (Table II). This

is typical of a simulation problem for hyperthermia cancer

therapy where external RF applicators are coupled to human

tissues via distilled water. The human body being modeled

would be fat and muscle (bone has about the same dielectric

constant as fat) and air from the lung, or pockets within the

intestine. The time step, dt, would be calculated by (2) using

E – 1, corresponding to air. So if cells of 1 cm were usedmin —

This is unfortunate. If the dielectric of the background

medium could be used

or @ = 8.9 times as large, meaning the simulation goes

almost nine times as fast.

Suppose the air were modeled as

e;ip(w) = 80 + 79 ‘; (lo)
W(jvc – w)
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Fig. 3. Diagram of a test to evaluate the FDTD calculation ttrrough a sphere
with parameters typical of those in a hyperthermia cancer therapy simulation.
The outer diameter is 30 cm, the muscle sphere has a diameter of 16 cm, and
the air sphere is 4 cm in diameter. The distilled water, which is the background
medium, has a dielectric constant of 80. The entire problem space is 603 cm3.
The FDTD cell!; are 1 cm3.

TABLE II
VALUES OF THE DieleCtriC CONSTANT AND CONDUCTIVITY

FOR VARIOUS HUMAN Trssuss AT 100 MHz

Tissue type Dielectric constant Conductivity

Muscle 70 .9

Fat (bone) 5 .05

Air 1. 0

where

UP = 100 MHz

VC = 10 MHz.

At 100 MHz, the term on the right in (10) is

and (10) becomes

&;ir(W) = 80 – 79 = 1 (11)

i.e., it starts out with the higher dielectric constant that was

wanted to satisfy the Courant condition, but the Drude formu-

lation will subtract out most of the value to give the correct

effective dielectric at the frequency of interest. The FDTD

formulation would go as follows: Taking the Z transform of

(10) and inserting ; into (4)

E(z) := l)(z) – Z-IS(2)

S(,7) ❑= (1 + e-V’”T)z-lS(z) - e-V’’Tz-2S(z)

w;T
+ (80 – c.) ~ (1 - e-’’’”~)ll(z).

(12a)
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Fig. 4. Comparison of Bessel function and FD133 results for the problem
illustrated in Fig. 3, i.e., a layered sphere in distilled water. The incident

frequency was’ 100 MHz.

Equation (12b) is the extra term to implement the speed up.

A similar formulation must be used fcm the fat and muscle

tissue. The results of :such a simulation are illustrated in Fig.

4. The problem space was 603 and the program occupied 10.1

megawords of core memory on a DEC Alpha workstation. The

problem converged in 250 time steps. Similar results were

obtained using the usual time step dictated by the Courant

condition for free space. However, it required 1500 time steps.

IV. DISCUSSION

The technique described in this letter offers the possibility of

a substantial speed up in computation time for some problems

using the FDTD method.

There are two disadvantages to using this method: 1)

information is only obtainable at one frequency per run and

2) the extra calculation to implement the Drtrde formula-

tion adds extra complexity and requires more core memory

(approximately 10%).
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